

Пример конфигурации туннеля IPsec "ЛВС-ЛВС" между PIX/ASA 7.x Security Appliance и маршрутизатором IOS

Содержание

Общие сведения

Предварительные условия

Требования Используемые компоненты Условные обозначения

Базовые сведения Настройка

> Схема сети Настройка

Настройка с помощью ASDM Проверка Поиск и устранение неисправностей

Команды диагностики

Дополнительные сведения

Общие сведения

В данном документе описан способ настройки туннеля IPsec между PIX Security Appliance начиная с версии 7.х или Adaptive Security Appliance (ASA) с одной внутренней сетью и маршрутизатором 2611, в котором работает криптографический образ. Для упрощения используются статические маршруты.

Дополнительные сведения о настройке туннеля "ЛВС-ЛВС" между маршрутизатором и PIX см. в документе Настройка IPsec - между маршрутизатором и PIX.

Дополнительные сведения о настройке туннеля "ЛВС-ЛВС" между брандмауэром PIX и концентратором Cisco VPN 3000 см. в документе Пример настройки туннеля IPsec "ЛВС-ЛВС" между концентратором Cisco VPN 3000 и брандмауэром PIX.

Дополнительные сведения о настройке туннеля "ЛВС-ЛВС" между PIX и концентратором VPN см. в документе Пример настройки туннеля IPsec между PIX и концентратором VPN.

Чтобы больше узнать о том, как туннели "ЛВС-ЛВС" между устройствами PIX также позволяют клиентам VPN получать доступ к промежуточным PIX через концентратор PIX, см. документ Пример настройки усовершенствованной связи оконечных PIX/ASA 7.x с клиентами через VPN с использованием аутентификации TACACS+.

Предварительные условия

Требования

Для данного документа нет особых требований.

Используемые компоненты

Сведения, содержащиеся в данном документе, приведены на основе следующих версий программного и аппаратного обеспечения:

- РІХ-525 с программным обеспечением РІХ версии 7.0
- Маршрутизатор Cisco 2611 под управлением операционной системы Cisco IOS® Release 12.2(15)Т13

Данные для документа были получены в специально созданных лабораторных условиях. При написании данного документа использовались только устройства с пустой (стандартной) конфигурацией. В рабочей сети необходимо изучить потенциальное воздействие всех команд.

Условные обозначения

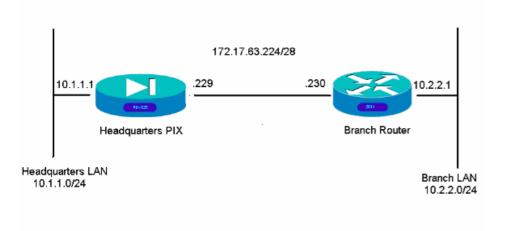
Дополнительные сведения об условных обозначениях см. в документе Технические рекомендации Cisco. Условные обозначения.

Базовые сведения

В РІХ команды **access-list** и **nat 0** используются совместно. Когда пользователь в сети 10.1.1.0 получает доступ к сети 10.2.2.0, используется список доступа для разрешения шифрования трафика сети 10.1.1.0 без преобразования сетевых адресов (NAT). В маршрутизаторе команды **route-map** и **access-list** используются для разрешения шифрования трафика сети 10.2.2.0 без NAT. Однако когда те же самые пользователи направляются в любое другое место, их адрес преобразуется в 172.17.63.230 посредством преобразования адресов портов (PAT).

Ниже приведены команды конфигурации, требуемые для PIX Security Appliance, чтобы для трафика туннеля *не* использовалось PAT, а для трафика в Интернет PAT использовалось

```
access-list nonat permit ip 10.1.1.0 255.255.255.0 10.2.2.0 255.255.255.0 nat (inside) 0 access-list nonat nat (inside) 1 10.1.1.0 255.255.255.0 0 0
```


Настройка

В этом разделе приводятся сведения о настройке функций, описанных в данном документе.

Примечание. Для поиска дополнительной информации о командах в данном документе используйте утилиту Command Lookup Tool (только для зарегистрированных пользователей).

Схема сети

В данном документе используется следующая конфигурация сети:

Настройка

Данные примеры настройки приведены для интерфейса командной строки. Если вы предпочитаете выполнять настройку при помощи ASDM, см. раздел Настройка с помощью Adaptive Security Device Manager (ASDM) данного документа.

- Центральный РІХ
- Маршрутизатор подразделения

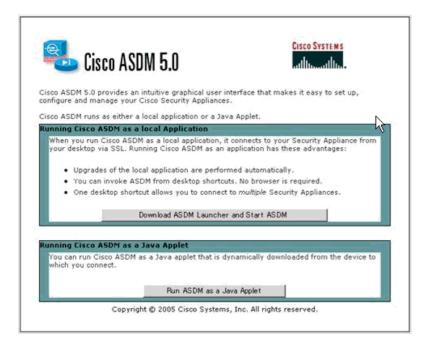
```
Центральный PIX
{\tt HQPIX}\,({\tt config})\, \# \textbf{show run} {\tt PIX} \ {\tt Version} \ \ 7.0\, (0)\, 102
names
interface Ethernet0
description WAN interface
nameif outside
security-level 0
ip address 172.17.63.229 255.255.255.240
interface Ethernet1
nameif inside
security-level 100
ip address 10.1.1.1 255.255.255.0
interface Ethernet2
shutdown
no nameif
no security-level
no ip address
interface Ethernet3
shutdown
no nameif
no security-level
no ip address
interface Ethernet4
shutdown
no nameif
no security-level
no ip address
interface Ethernet5
shutdown
no nameif
no security-level
no ip address
enable password 8Ry2YjIyt7RRXU24 encrypted
passwd 2KFQnbNIdI.2KYOU encrypted
```

```
hostname HOPIX
domain-name cisco.com
ftp mode passive
clock timezone AEST 10
access-list 100 extended permit ip any any
access-list 150 extended permit ip 10.1.1.0 255.255.255.0 10.2.2.0 255.255.255.0
access-list nonat extended permit ip 10.1.1.0 255.255.255.0 10.2.2.0 255.255.255.0
pager lines 24
logging enable
logging buffered debugging
mtu inside 1500
mtu outside 1500
no failover
monitor-interface inside
monitor-interface outside
asdm image flash:/asdmfile.50073
no asdm history enable
arp timeout 14400
nat-control
global (outside) 1 interface
nat (inside) 0 access-list nonat
nat (inside) 1 10.1.1.0 255.255.255.0
access-group 100 in interface inside
route outside 0.0.0.0 0.0.0.0 172.17.63.230 1
timeout xlate 3:00:00
timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 icmp 0:00:02
sunrpc 0:10:00 h323 0:05:00 h225 1:00:00 mgcp 0:05:00 mgcp-pat 0:05:00
sip 0:30:00 sip media 0:02:00
timeout uauth 0:05:00 absolute
aaa-server TACACS+ protocol tacacs+
aaa-server RADIUS protocol radius
aaa-server partner protocol tacacs+
username cisco password 3USUcOPFUiMCO4Jk encrypted
http server enable
http 10.1.1.2 255.255.255.255 inside
no snmp-server location
no snmp-server contact
snmp-server community public
snmp-server enable traps snmp
crypto ipsec transform-set avalanche esp-des esp-md5-hmac
crypto ipsec security-association lifetime seconds 3600
crypto ipsec df-bit clear-df outside
crypto map forsberg 21 match address nonat
crypto map forsberg 21 set peer 172.17.63.230
crypto map forsberg 21 set transform-set avalanche
crypto map forsberg interface outside
isakmp identity address
isakmp enable outside
isakmp policy 1 authentication pre-share
isakmp policy 1 encryption 3des
isakmp policy 1 hash sha
isakmp policy 1 group 2
isakmp policy 1 lifetime 86400
isakmp policy 65535 authentication pre-share
isakmp policy 65535 encryption 3des
isakmp policy 65535 hash sha
isakmp policy 65535 group 2
isakmp policy 65535 lifetime 86400
telnet timeout 5
ssh timeout 5
console timeout 0
tunnel-group 172.17.63.230 type ipsec-121
tunnel-group 172.17.63.230 ipsec-attributes
pre-shared-key '
class-map inspection default
match default-inspection-traffic
policy-map asa_global_fw_policy
class inspection default
inspect dns maximum-length 512
inspect ftp
inspect h323 h225
inspect h323 ras
inspect netbios
inspect rsh
inspect rtsp
inspect skinny
inspect esmtp
inspect sqlnet
inspect sunrpc
```

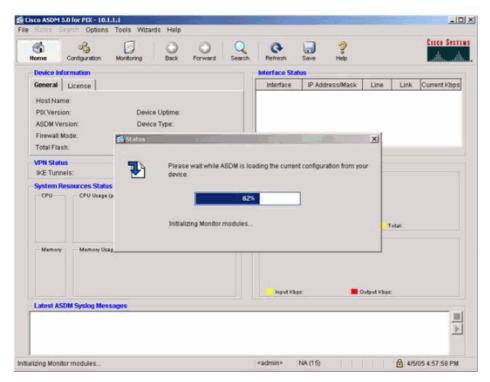
```
inspect tftp
inspect sip
inspect xdmcp
inspect http
!
service-policy asa_global_fw_policy global
Cryptochecksum:3a5851f7310d14e82bdf17e64d638738
: end
SV-2-8#
```

Маршрутизатор подразделения

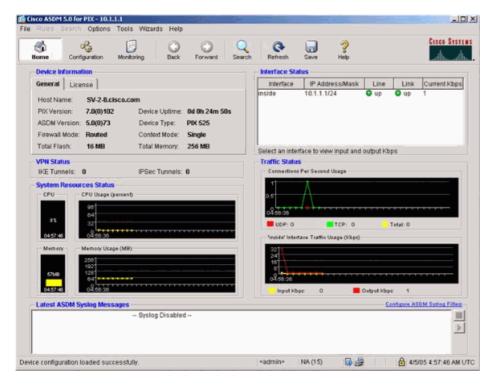
```
BranchRouter#show runBuilding configuration...
Current configuration : 1719 bytes
! Last configuration change at 13:03:25 AEST Tue Apr 5 2005
! NVRAM config last updated at 13:03:44 AEST Tue Apr 5 2005
version 12.2
service timestamps debug datetime msec
service timestamps log uptime
no service password-encryption
hostname BranchRouter
logging queue-limit 100
logging buffered 4096 debugging
username cisco privilege 15 password 0 cisco
memory-size iomem 15
clock timezone AEST 10
ip subnet-zero
ip audit notify log
ip audit po max-events 100
crypto isakmp policy 11
encr 3des
authentication pre-share
group 2
crypto isakmp key cisco123 address 172.17.63.229
crypto ipsec transform-set sharks esp-des esp-md5-hmac
crypto map nolan 11 ipsec-isakmp
set peer 172.17.63.229
set transform-set sharks
match address 120
no voice hpi capture buffer
no voice hpi capture destination
mta receive maximum-recipients 0
interface Ethernet0/0
ip address 172.17.63.230 255.255.255.240
ip nat outside
no ip route-cache
no ip mroute-cache
```

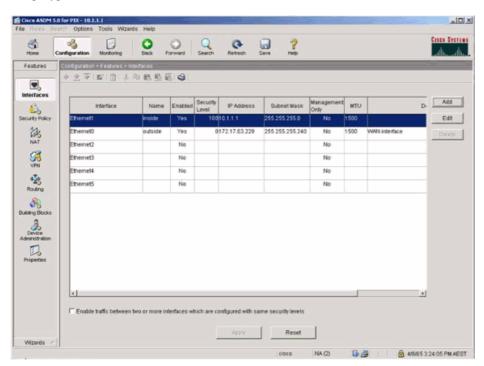

```
half-duplex
crypto map nolan
interface Ethernet0/1
ip address 10.2.2.1 255.255.255.0
ip nat inside
half-duplex
ip nat pool branch 172.17.63.230 172.17.63.230 netmask 255.255.255.0
ip nat inside source route-map nonat pool branch overload
no ip http server
no ip http secure-server
ip classless
ip route 10.1.1.0 255.255.255.0 172.17.63.229
access-list 120 permit ip 10.2.2.0 0.0.0.255 10.1.1.0 0.0.0.255
access-list 130 deny ip 10.2.2.0 0.0.0.255 10.1.1.0 0.0.0.255
access-list 130 permit ip 10.2.2.0 0.0.0.255 any
route-map nonat permit 10
match ip address 130
call rsvp-sync
mgcp profile default
dial-peer cor custom
line con 0
line aux 0
line vty 0 4
login
end
```

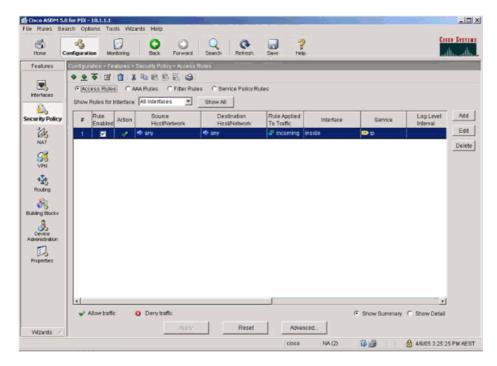
Настройка с помощью ASDM


В этом примере конфигурации показан способ настройки PIX с использованием графического интерфейса пользователя ASDM. ПК с Интернет-обозревателем и IP-адресом 10.1.1.2 подключен к внутреннему интерфейсу PIX e1. Проверьте, чтобы в PIX был включен http.

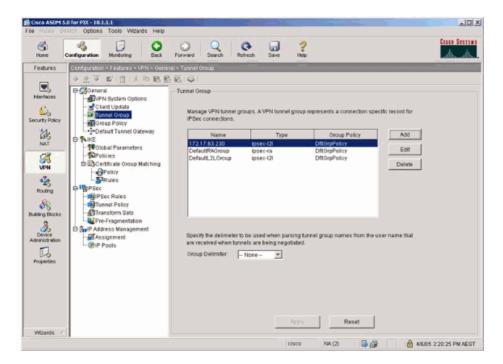
В данной процедуре демонстрируется настройка центрального РІХ при помощи ASDM.

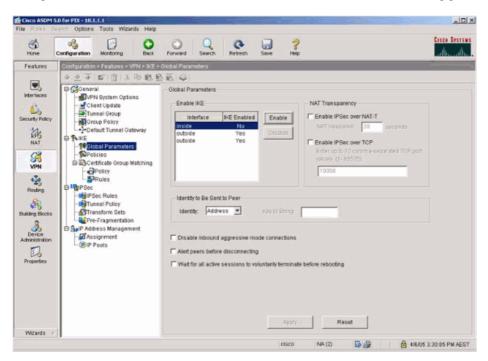

1. Подключите ПК к РІХ и выберите способ загрузки.

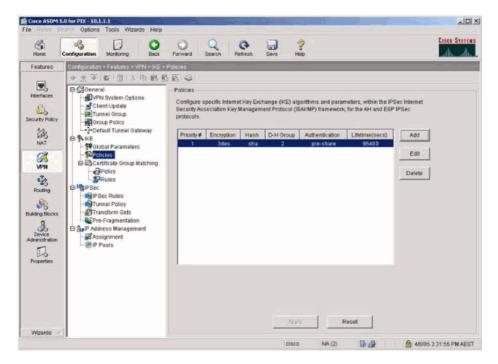

ASDM загружает с PIX существующую конфигурацию.

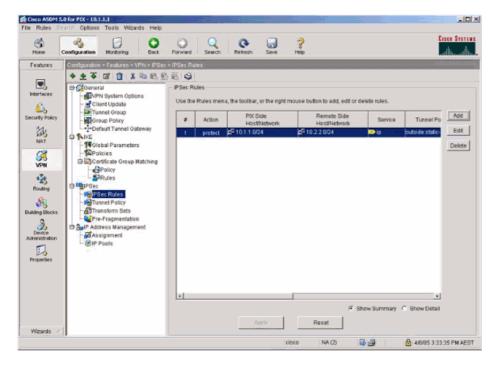

В окне приведен инструментарий для мониторинга и меню.

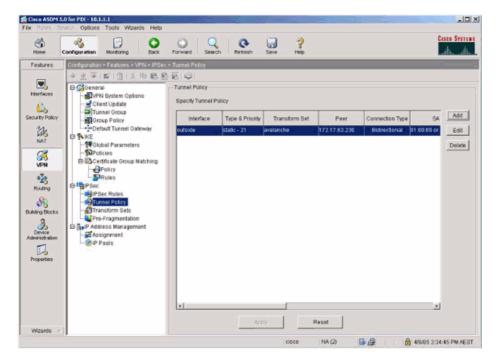
2. Выберите Configuration > Features > Interfaces, затем выберите Add для новых интерфейсов или Edit для существующей конфигурации.

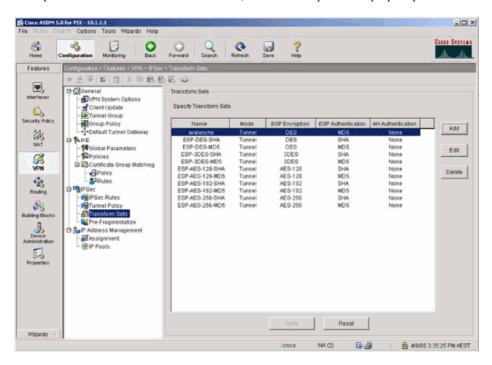

3. Примените параметры безопасности ко внутреннему интерфейсу.

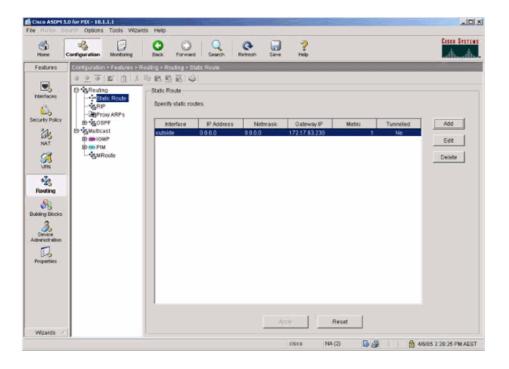

4. В окне настройки NAT зашифрованный трафик исключен для NAT, а для всего остального трафика, идущего на внешний интерфейс, используется NAT/PAT.


5. Выберите **VPN > General > Tunnel Group** и включите группу туннелей.


6. Выберите VPN > IKE > Global Parameters и включите IKE на внешнем интерфейсе.


7. Выберите **VPN > IKE > Policies**, а затем выберите политики IKE.


8. Выберите VPN > IPsec > IPsec Rules, а затем выберите IPsec для локального туннеля и удаленной адресации.


9. Выберите VPN > IPsec > Tunnel Policy, а затем выберите политику туннеля.

10. Выберите VPN > IPsec > Transform Sets, а затем выберите набор преобразований.

11. Выберите **Routing > Routing > Static Route**, а затем выберите статический маршрут до шлюза-маршрутизатора. В данном примере для упрощения статический маршрут указывает на удаленный равноправный узел VPN.

Проверка

Воспользуйтесь данным разделом для проверки правильности функционирования вашей конфигурации.

Утилита Output Interpreter Tool (только для зарегистрированных пользователей) (OIT) поддерживает некоторые команды **show**. Используйте OIT для просмотра аналитических данных по выходным данным команды **show**.

- show crypto ipsec sa отображает связи безопасности, соответствующие второму этапу.
- show crypto isakmp sa отображает связи безопасности, соответствующие первому этапу.

Поиск и устранение неисправностей

ASDM можно использовать для включения регистрации, а также для просмотра журналов.

- Чтобы включить регистрацию, выберите Configuration > Properties > Logging > Logging Setup, установите флажок Enable Logging и нажмите кнопку Apply.
- Для просмотра журналов выберите Monitoring > Logging > Log Buffer > On Logging Level, затем выберите Logging Buffer и нажмите кнопку View.

Команды диагностики

Утилита Output Interpreter Tool (только для зарегистрированных пользователей) (OIT) поддерживает некоторые команды **show**. Используйте OIT для просмотра аналитических данных по выходным данным команды **show**.

Примечание: Перед использованием команд **debug** ознакомьтесь со статьей Важная информация о командах отладки.

- debug crypto ipsec отображает согласования IPSec на этапе 2.
- debug crypto isakmp отображает согласования ISAKMP на этапе 1.
- debug crypto engine отображает зашифрованный трафик.

- clear crypto isakmp удаляет связи безопасности на этапе 1.
- clear crypto sa удаляет связи безопасности на этапе 2.
- debug icmp trace показывает, достигают ли PIX ICMP-запросы от хостов. Для выполнения этой отладки добавьте команду access-list, чтобы разрешить ICMP в вашей конфигурации.
- **logging buffer debugging** отображает установленные соединения и отказы в подключении к хостам, которые используют PIX. Информация хранится в буфере журнала PIX. Его можно просмотреть при помощи команды **show log**.

Дополнительная информация

- ПО брандмауэра Cisco PIX
- Справочник по командам брандмауэра Cisco Secure PIX
- Примечания по продуктам безопасности (включая PIX)
- Документы RFC
- Техническая поддержка и документация Cisco Systems

© 1992-2010 Cisco Systems, Inc. Все права защищены.

Дата генерации PDF файла: Jan 05, 2010

http://www.cisco.com/support/RU/customer/content/9/92118/ipsec-rtr-2-pix-asa.shtml